The largest issue, in my opinion, with irreproducibility and
bias is scientific research isn’t a lack of awareness, and it is not even the
fact that these problems exist. The greatest problem is that there is a lack of
understanding of why, and a lack of self-awareness that you personally are
capable of bias. To my point of awareness of bias and irreproducibility that is
not the issue. As obvious in the homework assignment, there have been many
articles “shedding light” on the issue. It is so common that the term irreproducible
data is more like a running lab joke then a real day-to-day concern. Most
people blame the “perish or publish” culture, which puts a lot of pressure on
publishing data as soon as possible, the vague (either on purpose or not)
methods sections, and also the use of statistics. The pressure to publish will
never go away. The concern with a lack of transparency in methods section is
also an issue that arises mostly due to the high pressure to publish, but also
because there are small things that make a large difference, and the research
is not even aware of these. After my admittedly short time in science (6 years)
I do believe that this issue has started to be addressed, and may be a more
personal then systematic issue.
The argument for blaming the use of statistics is a
complicated one. This is because statistics can be extremely powerful and
necessary, particularly as researchers move toward analyzing large data sets
and “-omics” type studies. The main argument is that statistics is either used
to freely or in a basic understanding, or that complicated statistics are used
to make data seem more significant then truly are. However, as pointed out in Jeremy Berg’s blog, the issue is that
scientists do not really understand how the statistics work. Importantly, they
do not understand the bias that is inherent in the statistics, and why a
significant fraction of experiments cannot be repeated exactly.
If you fully understand the statistics on how easily data
could not be reproducible it is easier to swallow the thought that
irreproducible data is common place, and has always been a part of scientific
research. This is argued by John Horvath,
where he stresses that if we accept that most of the data published is false or
irreproducible, we can then strive to focus on what is true. As scientists we
are taught always to question data or idea, and this does not end just because
something is “statistically significant”. However, if we as scientists can accept this
and focus on the ideas being presented, and how we can use the small amount of
“true” data to move science further then the irreproducibility is not as huge
an issue as we once thought, as long as we are being honest with our data and
eliminating personal biases. Meaning it is OK to accept that there is a small
level of irreproducibility, but we cannot add to it with our personal biases,
otherwise that small level will become very large.
No comments:
Post a Comment